Water Level Variability Along the North Carolina Coast

Rick Luettich
Institute of Marine Sciences
University of North Carolina at Chapel Hill

Reide Corbett
Integrated Coastal Programs
East Carolina University

https://ncics.org/programs/nccsr/

Why Ocean Water Level Matters in Coastal NC

Major portions of coastal NC only a few ft above sea level

 Water level impacts safety, property, livelihoods, economies

Fragile barrier islands

 Major degradation could lead to significant change in flood hazards and ecosystems in adjoining sounds

Wind waves & swell

- Generated by winds
- Cause shoreline and dune erosion
- Cause structural damage
- Future wave conditions depend largely on climate affects on storms
- Few studies on future wave conditions
 no strong trends along NC coast
- Waves affected by changes in water level

Astronomical tides

- Due to gravitational attraction of sun, moon and earth
- Along the NC coast
 - Twice daily high and low tides Low to high tide range = 3.7 ft in NE to 5.5 ft in SE
 - 14-day spring neap cycle
 - King Tides highest high tides of year nckingtides.web.unc.edu
 - Longer period tides: 4.4 yr 18.6 yr cycles \sim 5-10% change in dominant tides
- Future changes in tides can be due to
 - near shore coastal change (dredging) doubling of tidal range in Wilmington in 20th century
 - other water level change

Coastal Storms – storm surge / storm tide

- Extratropical Cyclones winter Nor'easters
 - Northeast NC coast averages ~14.5 per year causing storm surge > 1 ft
 - No clear pattern in future climate
- Tropical Cyclones hurricanes
 - NC coast averages a hurricane every 2-3 years
 - Hurricane Hazel (1956) storm tide ~ 18 ft open coast
 - Hurricane Florence (2018) storm surge ~ 10 ft
 New Bern
 - Hurricane Dorian (2019) storm surge ~ 6-7 ft
 Ocracoke
 - Stronger storms predicted in future climate
 - Surge affected by other depth/water level change

What are Storm Surge / Storm Tide?

Coastal Storms – extreme precipitation

- Dominated by tropical cyclones
- Increasing over time: future climate = wetter storms
- Widespread precipitation based coastal flooding usually occurs after storm surge
- Florence (2018) storm surge & precipitation flooding were coincident = compound flooding

Hurricane Florence (2018) Precipitation Totals

Oceanic Processes

- Steric Effect
 - Annual heating and cooling cycle ~ 0.5 ft
 - Global mean sea level rising due to overall warmer ocean
- Gulf Stream
 - Slowing of Gulf Stream = elevated water levels along adjacent coast (~ 1ft) over days to weeks
 - 2-5 year cycle in position
 - Future climate may weaken Atlantic meridional overturning circulation which GS is part of
- Other Ocean Atmospheric Processes
 - El Nino Southern Oscillation, Atlantic Multidecadal Oscillation, etc
 - 1 year to decadal cycles
 - Response level small, but cumulative with other processes
 - Unclear about relationship to future climate

<u>Land elevation change</u> + Ocean elevation change

- North Carolina land elevation change
 - Southern province (#1) rising + 0.01 in/yr
 - Northern province (#2) sinking 0.04 in/yr
 - Central province (#3) sinking intermediate

Land elevation change + Ocean elevation change

- Global Mean Sea Level (GMSL)
 - Historically constant ± 3.5 in for 2400 years
 - GMSL Rising since beginning of 20th century
 - Rate of GMSL rise is increasing
 - -1901-1990

0.06 in/yr

-2005-2015

0.14 in/yr

Land elevation change + Ocean elevation change

- Global Mean Sea Level (GMSL)
 - Historically constant ± 3.5 in for 2400 years
 - GMSL Rising since beginning of 20th century
 - Rate of GMSL rise is increasing
 - 1901 1990 0.06 in/yr
 - 2005 2015 0.14 in/yr
 - GMSL caused by
 - Melting ice sheets and land-based glaciers
 - Steric effects —

Land elevation change + Ocean elevation change

- Global Mean Sea Level (GMSL)
 - GMSL In 2100

```
    Rising @ 0.16 - 0.35 in/yr
    Elevated 0.9 - 1.9 ft vs 2000
    RCP2.6: greenhouse gas emissions peak in 2020 and decline thereafter
```

Rising @ 0.39 - 0.79 in / yr
 Elevated 2 - 3.6 ft vs 2000
 RCP8.5: greenhouse gas emissions increase through 21st century

IPCC SROCC 2019

What does this mean for coastal NC?

High tide or sunny day flooding

- Happens occasionally now
- As often as 2x per week in 2050
- Every 1-2 days in 2100

HTF=1.8ft > MHHW

What does this mean for coastal NC?

Tropical Cyclone water levels

- 1980-2005 vs 2070-2095 (RCP8.5)
 - Recent 1% annual prob water levels ~30% or greater annual prob near end of century
 - Effect of SLR 2-3x effect of change in TCs in coastal NC

Marsooli et al 2019

Conclusions

- It doesn't take a large change in water level to impact significant portions of coastal NC
 inches matter, feet can be catastrophic
- Summing the many drivers of water level variability + relative sea level rise = significant high tide/sunny day flooding in 2^{nd} half of 21^{st} century
- Coastal NC is highly vulnerable to major storm surge / flooding from hurricanes
- Climate change is causing GMSL rise and strengthening tropical cyclones GMSL 2-3 times more important than stronger hurricanes on future storm surge in coastal NC
- Hurricane driven water levels that recently had a 1% chance of occurring each year may have 30% or greater chance of occurring each year near the end of the 21st century.
- Growing concern about precipitation based coastal flooding and compound flooding

